首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   405篇
  国内免费   675篇
测绘学   25篇
大气科学   948篇
地球物理   454篇
地质学   366篇
海洋学   597篇
天文学   59篇
综合类   81篇
自然地理   266篇
  2024年   7篇
  2023年   28篇
  2022年   57篇
  2021年   74篇
  2020年   73篇
  2019年   71篇
  2018年   75篇
  2017年   82篇
  2016年   80篇
  2015年   91篇
  2014年   127篇
  2013年   120篇
  2012年   133篇
  2011年   129篇
  2010年   98篇
  2009年   145篇
  2008年   148篇
  2007年   177篇
  2006年   154篇
  2005年   110篇
  2004年   114篇
  2003年   100篇
  2002年   90篇
  2001年   76篇
  2000年   64篇
  1999年   52篇
  1998年   55篇
  1997年   53篇
  1996年   48篇
  1995年   42篇
  1994年   35篇
  1993年   21篇
  1992年   14篇
  1991年   6篇
  1990年   13篇
  1989年   6篇
  1988年   14篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2796条查询结果,搜索用时 15 毫秒
61.
根据2007年11月在东海和南黄海海域表层海水测得的TCO2和TA数据,计算了表层海水pCO2,结合现场环境对表层海水CO2体系各参数的分布进行了讨论,探讨了pCO2与海水温度及叶绿素的相关性,利用Wanninkhof(1992)提出的通量模式并采用加权平均法估算了整个调查海域的海-气CO2的净通量。结果表明:观测海域表层海水CO2系统各参量的分布呈明显的不均匀性,在水团的混合处往往是各参量的高值或低值中心。由相关性分析可知,pCO2的分布主要受海水温度的影响,生物活动的影响较弱。受秋季较大风速的影响,调查海域表现为强的CO2源,秋季可向大气释放CO2约为556×104tC。  相似文献   
62.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
63.
Heavy rainfall events during the fall season are causing extended damages in Mediterranean catchments. A peaks‐over‐threshold model is developed for the extreme daily areal rainfall occurrence and magnitude in fall over six catchments in Southern France. The main driver of the heavy rainfall events observed in this region is the humidity flux (FHUM) from the Mediterranean Sea. Reanalysis data are used to compute the daily FHUM during the period 1958–2008, to be included as a covariate in the model parameters. Results indicate that the introduction of FHUM as a covariate can improve the modelling of extreme areal precipitation. The seasonal average of FHUM can improve the modelling of the seasonal occurrences of heavy rainfall events, whereas daily FHUM values can improve the modelling of the events magnitudes. In addition, an ensemble of simulations produced by five different general circulation models are considered to compute FHUM in future climate with the emission scenario A1B and hence to evaluate the effect of climate change on the heavy rainfall distribution in the selected catchments. This ensemble of climate models allows the evaluation of the uncertainties in climate projections. By comparison to the reference period 1960–1990, all models project an amplification of the mean seasonal FHUM from the Mediterranean Sea for the projection period 2070–2099, on average by +22%. This increase in FHUM leads to an increase in the number of heavy rainfall events, from an average of 2.55 events during the fall season in present climate to 3.57 events projected for the period 2070–2099. However, the projected changes have limited effects on the magnitude of extreme events, with only a 5% increase in the median of the 100‐year quantiles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
64.
Jie Ma  Xin‐Jun Zheng  Yan Li 《水文研究》2012,26(26):4029-4037
As the substantial component of the ecosystem respiration, soil CO2 flux is strongly influenced by infrequent and unpredictable precipitation in arid region. In the current study, we investigated the response of soil CO2 flux to rain pulses at a saline desert in western China. Soil CO2 flux was measured continuously during the whole growing season of 2009 at six sites. We found that there were remarkable changes in amplitude or diurnal patterns of soil CO2 flux induced by rainfall events: from bimodal before rain to a single peak after that. Further analysis indicated that there is a significant linear relationship (P < 0.001) between soil CO2 flux and soil temperature (Tsoil). However, a hysteresis between the waveform of diurnal course of CO2 flux and Tsoil was observed: with soil CO2 flux always peaked earlier than Tsoil. Furthermore, a double exponential decay function was fitted to the soil CO2 flux after rainfall, and total carbon (C) releases were estimated by numerical integration for rainfall events. The relative enhancement and total C release, in association with the rain pulses, was linearly related to the amount of precipitation. According to the size and frequency of rainfall events, the total amount of C release induced by rain pulses was computed as much as 7.88 g C·m–2 in 2009, equivalent to 10.25% of gross primary production. These results indicated that rain pulses played a significant role in the carbon budget of this saline desert ecosystem, and the size of them was a good indicator of rain‐induced flux enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
65.
Abstract

Vorticity, although not the primary variable of fluid dynamics, is an important derived variable playing both mathematical and physical roles in the solution and understanding of problems. The following treatment discusses the generation of vorticity at rigid boundaries and its subsequent decay. It is intended to provide a consistent and very broadly applicable framework within which a wide range of questions can be answered explicitly. The rate of generation of vorticity is shown to be the relative tangential acceleration of fluid and boundary without taking viscosity into account and the generating mechanism therefore involves the tangential pressure gradient within the fluid and the external acceleration of the boundary only. The mechanism is inviscid in nature and independent of the no-slip condition at the boundary, although viscous diffusion acts immediately after generation to spread vorticity outward from boundaries. Vorticity diffuses neither out of boundaries nor into them, and the only means of decay is by cross-diffusive annihilation within the fluid.  相似文献   
66.
Soil heat flux is important for surface energy balance (SEB), and inaccurate estimation of soil heat flux often leads to surface energy imbalance. In this paper, by using observations of surface radiation fluxes and soil temperature gradients at a semi-arid grassland in Xilingguole, Inner Mongolia, China from June to September 2008, the characters of the SEB for the semi-arid grassland were analyzed. Firstly, monthly averaged diurnal variations of SEB components were revealed. A 30-min forward phase displacement of soil heat flux (G) observed by a fluxplate at the depth of 5-cm below the soil surface was conducted and its effect on the SEB was studied. Secondly, the surface soil heat flux (Gs) was computed by using harmonic analysis and the effect of the soil heat storage between the surface and the fluxplate on the SEB was examined. The results show that with the 30-min forward phase displacement of observed G, the slope of the ordinary linear regression (OLR) of turbulent fluxes (H+LE) against available energy (Rn–G) increased from 0.835 to 0.842, i.e., the closure ratio of SEB increased by 0.7%, yet energy imclosure of 15.8% still existed in the SEB. When Gs, instead of G was used in the SEB equation, the slope of corresponding OLR of (H+LE) against (Rn–Gs) reached 0.979, thereby the imclosure ratio of SEB was reduced to only 2.1%.  相似文献   
67.
68.
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
69.
本文使用六个不同的最新大气模式进行了协调数值集合实验,评估和量化了全球海表面温度(SST)对1982-2014年冬季早期北极变暖的影响.本研究设计了两组实验:在第一组(EXP1)中,将OISSTv2逐日变化的海冰密集度和SST数据作为下边界强迫场;在第二组(EXP2)中,将逐日变化的SST数据替换为逐日气候态.结果表明:(1)EXP1的多模式集合总体平均值显示0.4℃/10年的近地表(约850 hPa)升温趋势,为再分析数据结果中升温趋势的80%.(2)在这六个模式中,模拟的变暖趋势均很强,幅度为0.36-0.50℃/10年.(3)全球海表温度可以解释北极对流层中低层EXP1的大部分模拟的变暖趋势,占再分析数据结果的58%.(4)再分析数据结果中,北极上空的对流层上层变暖(约200 hPa)不是由强迫信号而可能是由自然气候变率引起的.本文还探索了影响北极初冬变暖的可能源区,并讨论了该研究的局限性.  相似文献   
70.
In mountainous lake areas, lake–land and mountain–valley breezes interact with each other, leading to an "extended lake breeze". These extended lake breezes can regulate and control energy and carbon cycles at different scales. Based on meteorological and turbulent fluxes data from an eddy covariance observation site at Erhai Lake in the Dali Basin,southwest China, characteristics of daytime and nighttime extended lake breezes and their impacts on energy and carbon dioxide exchange in 2015 are investigated. Lake breezes dominate during the daytime while, due to different prevailing circulations at night, there are two types of nighttime breezes. The mountain breeze from the Cangshan Mountain range leads to N1 type nighttime breeze events. When a cyclonic circulation forms and maintains in the southern part of Erhai Lake at night, its northern branch contributes to the formation of N2 type nighttime breeze events. The prevailing wind directions for daytime, N1, and N2 breeze events are southeast, west, and southeast, respectively. Daytime breeze events are more intense than N1 events and weaker than N2 events. During daytime breeze events, the lake breeze decreases the sensible heat flux(Hs) and carbon dioxide flux(FCO_2) and increases the latent heat flux(LE). During N1 breeze events, the mountain breeze decreases Hs and LE and increases FCO_2. For N2 breeze events, the southeast wind from the lake surface increases Hs and LE and decreases suppress carbon dioxide exchange.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号